MRFCleaner: Astuces générales d'utilisation
There are several fundamental tips and tricks for optimizing processing. The following list identifies and briefly describes some key issues to consider when cleaning data.
Connaître ses données
The first step in any cleaning exercise is to become familiar with your source data. Information on data quality (such as 1m vs. 100m accuracy), data currency, and intended use is important in determining which cleaning modules and tolerances should be used. If such information is not available, a visual inspection of the design file(s) should provide insight into average line-work gap sizes, line weeding requirements, and other issues which may exist.
Débuter modestement
When setting cleaning tolerances, it is always best to start small. With smaller tolerances, the software uses a smaller search radius, which reduces the number of potential element intersections to consider and increases processing speed. Also, if the bulk of the linework errors can be corrected using a small tolerance, more detail can be maintained in the dataset. One or more cleaning processes can always be repeated with larger tolerances to increase the number of errors automatically corrected.
Mélanger le tout
En fonction du jeu de données source, et son utilisation voulue, il est possible d'obtenir de meilleurs résultats en exécutant les modules individuels avec des tolérances différentes.
FME Community
FME Community iest l'endroit où trouver des démos, des tutoriaux, des articles, des FAQ et bien plus encore. Obtenez des réponses à vos questions, apprenez des autres utilisateurs et suggérez, votez et commentez de nouvelles entités.
Rechercher des exemples et informations à propos de ce Transformer dans FME Community.